Research on Lazy Theta* Route Planning Algorithm Based on Grid Point Optimization

Author:

Gao Zhizhou,Wan Lujun,Cai Ming,Xu Xinyu

Abstract

In recent years, the problem of route planning in complex battlefield environments has attracted significant attention. With the increasingly worrying international situation, safety and flyability in a continuously changing threat environment are critical factors in route planning research. Thus, this paper proposes an improved Lazy Theta* algorithm that adapts to a complex battlefield environment and finds the optimal route. Specifically, given the low computational efficiency and data redundancy of the existing environmental threat modeling, the developed scheme first employs an octree grid to divide the environment into a grid. Furthermore, based on a real environmental threat model and flight constraints, we design a Lazy Theta* algorithm based on octree grid points, which shortens the planning path and reduces the path cost. Finally, this paper proposes an equally spaced B-spline to smooth the route and improve its smoothness and flyability. Several simulated experiments verify that the smoothed route improves safety and flight ability while reducing the route’s distance. Overall, the simulation results prove that the proposed method significantly improves the planning efficiency and flyability compared with traditional methods.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Research on Path Planning Technology in Penetration;Gao;Master’s Thesis,2021

2. Route-Planning Method for Plant Protection Rotor Drones in Convex Polygon Regions

3. A Review of Research on UAV Obstacle Avoidance Methods;Liu;J. Ordnance Equip. Eng.,2022

4. A new path planning method based on sparse A* algorithm with map segmentation

5. Improvement and Application of Dijkstra Algorithms;Bing;Acad. J. of Comput. Inf. Sci.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Path Planning Algorithms;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3