Toward Sustainability of the Aqueous Phase Reforming of Wastewater: Heat Recovery and Integration

Author:

Heras FranciscoORCID,de Oliveira Adriana S.,Baeza José A.ORCID,Calvo LuisaORCID,Ferro Víctor R.ORCID,Gilarranz Miguel A.

Abstract

Aqueous-phase reforming has been revealed as a novel, interesting and efficient process for the treatment of wastewater containing organic pollutants. However, due to the relatively severe operating conditions (above 15 bar and 200 °C), this process could become economically competitive if any solution for energy or material valorization is implemented. Most research has been devoted to direct the process to H2 production as an alternative to reach economic sustainability, but the results obtained were not competitive in the current market of hydrogen and syngas. In this work, a preliminary simulation study (using Aspen HYSYS software) of the process heat balance in different conditions was implemented to induce a heat integration that would allow the auto-sustainability of the process, even generating in some cases an excess of energy that could constitute an opportunity for a positive economic balance. The results showed that this approach would only be possible by maximizing the methane production to the detriment of hydrogen production.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3