MobiRes-Net: A Hybrid Deep Learning Model for Detecting and Classifying Olive Leaf Diseases

Author:

Ksibi AmelORCID,Ayadi Manel,Soufiene Ben Othman,Jamjoom Mona M.,Ullah ZahidORCID

Abstract

The Kingdom of Saudi Arabia is considered to be one of the world leaders in olive production accounting for about 6% of the global olive production. Given the fact that 94% of the olive groves are mainly rain-fed using traditional methods of production, the annual olive production is witnessing a noticeable fluctuation which is worse due to infectious diseases and climate change. Thus, early and effective detection of plant diseases is both required and urgent. Most farmers use traditional methods, for example, visual inspection or laboratory examination, to identify plant diseases. Currently, deep learning (DL) techniques have been shown to be useful methods for diagnosing olive leaf diseases and many other fields. In this work, we use a deep feature concatenation (DFC) mechanism to combine features extracted from input images using the two modern pretrained CNN models, i.e., ResNet50 and MobileNet. Hence, we propose MobiRes-Net: A neural network that is a concatenation of the ResNet50 and MobileNet models for overall improvement of prediction capability. To build the dataset used in the study, 5400 olive leaf images were collected from an olive grove using a remote-controlled agricultural unmanned aerial vehicle (UAV) equipped with a camera. The overall performance of the MobiRes-Net model achieved a classification accuracy of 97.08% which showed its superiority over ResNet50 and MobileNet that achieved classification accuracies of 94.86% and 95.63%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MC-ShuffleNetV2: A lightweight model for maize disease recognition;Egyptian Informatics Journal;2024-09

2. YOLOv8_LASKTR: A Multi-dimensional Tomato Disease Identification Algorithm in Complex Environments;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

3. A Deep Dive into Precision Horticulture: Unravelling Olive Peacock Spot Intensity with Hybrid Deep Learning;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

4. Deep Learning Models for Automatic Detection and Classification of Pathogens in Olive Leaves;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

5. Advancements in Remote Sensing Imagery Applications for Precision Management in Olive Growing: A Systematic Review;Remote Sensing;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3