Methods for Underwater Gravity Measurement Error Compensations Based on Correlation Analysis

Author:

Yu Dongyao,Xiong Zhiming,Cao Juliang,Cai Shaokun,Yu Ruihang,Liu Wei

Abstract

The measurement of Earth’s gravitational field is important in geophysics, geodynamics, geodesy, oceanography, and space science. The ocean covers 71% of the earth’s surface; therefore, measuring the ocean’s gravitational field is crucial. Compared with shipborne gravimetry, underwater gravimetry near the seafloor is closer to gravity sources and can obtain short-wavelength gravity information that is useful for small-scale deposit detection and seawater intrusion monitoring. This article focuses on gravimetric errors caused by the poor dynamics of the carrier; an error compensation method for underwater gravimetry based on correlation analysis is proposed. By analyzing the error sources that affect the dynamics of the carrier, the relationship between the gravimetry error and impact factors related to the dynamics was established, and the model’s parameters were estimated by the least-squares fitting method. The experimental data show that this method can effectively compensate for gravimetric errors caused by carrier dynamics and provide the theoretical basis and algorithm model for underwater gravimetry in the bottom-tracking mode.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference6 articles.

1. Systematic error compensation for airborne gravimetry;Sun;Chin. J. Geophys.,2013

2. Post mission error compensation method of gravity gradiometry based on deep learning;Cheng;Glob. Geol.,2021

3. A general model for compensating remainder dynamic environment effect on marine and airborne gravimetry;Huang;Acta Geod. Cartogr. Sin.,2020

4. Li, J., Zhang, K., and Zhang, Q. (2009, January 16–19). A Performance Analysis and Precise Temperature Control of Accelerometers for Airborne gravimetry. Proceedings of the International Conference on Electronic Measurement & Instruments, Beijing, China.

5. A new method for underwater dynamic gravimetry based on multisensor integrated navigation;Xiong;Geophysics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3