IoT-Based Intelligent Monitoring System Applying RNN

Author:

Shin Moonsun,Hwang Seonmin,Kim Byungcheol,Seo Sungbo,Kim Junghwan

Abstract

In this paper, we propose an intelligent monitoring framework based on the Internet of Things (IoT) by applying a Recurrent Neural Network (RNN) for the predictive maintenance of a biobanking system. RNN, which is one of the deep learning models, is used for time series data. It is called a sequence model because it processes inputs and outputs in sequence units. The proposed framework measures the internal temperature of the cryogenic freezer and the temperature of each component simultaneously, monitors the internal temperatures of internal and middle layers in real time, sends the sensing temperature data to the server, and performs predictive learning. Thus, it is possible to support the intelligent predictive maintenance of the biobank by performing a time series data analysis of the temperature sensor using RNN. Among RNN methods, a simple RNN has a longer-term dependency problem; therefore, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), which have higher learning performance, are selected. To support the intelligent predictive maintenance of the biobank, both the LSTM and GRU models were constructed, and comparative experiments were performed. The proposed system can ensure the safety of bio-resources by performing predictive maintenance using RNN and provide an accurate status of the biobank in real-time. In addition, before an abnormal situation occurs, it is possible to respond immediately to emergencies that may damage biological resources.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Study on the data management and service trends in the biobank;Miyoung;Proceedings of the Korea Information Management Society,2017

2. Implementation of Resource Management System for Efficient Biological Research Resource Management;Hyejin;Master’s Thesis,2012

3. Developing Operation Fault Detection for Freezer—A Comparative Study of Machine Learning Algorithms;Bokhan;Korean J. Air Cond. Refrig. Eng.,2018

4. Ubiquitous Data Accessing Method in IoT-Based Information System for Emergency Medical Services

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3