Soil Salinity Prediction and Its Severity Mapping Using a Suitable Interpolation Method on Data Collected by Electromagnetic Induction Method

Author:

Jantaravikorn Yuratikan,Ongsomwang SuwitORCID

Abstract

Salt mining and shrimp farming have been practiced in the Non Thai district and the surrounding areas for more than 30 years, creating saline soil problems. To solve the soil salinity problem, soil salinity prediction and mapping utilizing the electromagnetic induction method (EMI) and spatial interpolation methods were examined in the Non Thai district, Nakhon Ratchasima province, Thailand. The research objectives were (1) to predict soil salinity using spatial interpolation methods and (2) to identify a suitable spatial interpolation method for soil salinity severity mapping. The research methodology consisted of five steps: apparent electrical conductivity (ECa) measurement using an electromagnetic induction (EMI) method; in situ soil sample collection and electrical conductivity of the saturated soil paste extract (ECe) measurement; soil electrical conductivity estimation using linear regression analysis (LRA); soil salinity prediction and accuracy assessment; and soil salinity severity classification and overlay analysis with relevant data. The result of LRA showed a strong positive relationship between ECe and ECa. The correlation coefficient (R) values of a horizontal measuring mode (HH) and a vertical measuring mode (VV) were 0.873 to 0.861, respectively. Four selected interpolation methods—Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Ordinary CoKriging (OCK) with soil moisture content, and Regression Kriging (RK) without covariable factor—provided slightly different patterns of soil salinity prediction with HH and VV modes. The mean values of the ECe prediction from the four methods at the district level varied from 2156.02 to 2293.25 mS/m for HH mode and from 2377.38 to 2401.41 mS/m for VV mode. Based on the accuracy assessment with the rank-sum technique, the OCK is a suitable interpolation method for soil salinity prediction for HH mode. At the same time, the IDW is suitable for soil salinity prediction for the VV mode. The dominant soil salinity severity classes of the two measuring modes using suitable spatial interpolation methods were strongly and very strongly saline. Consequently, the developed research methodology can be applied to conduct soil salinity surveys to reduce costs and save time in other areas by government agencies in Thailand. Nevertheless, to apply the EMI method for soil salinity survey, the users should understand the principle of EMI and how to calibrate and operate the EM device properly for accurate ECa measurement.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference83 articles.

1. Global Symposium on Salt-Affected Soils: Outcome Document,2022

2. Remote sensing of soil salinity: potentials and constraints

3. Halophyte Uses for the Twenty-First Century;Yensen,2008

4. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

5. Gene expression profiling of plants under salt stress. Crit. Rev;Jamil;Plant Sci.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3