Partitioning DNNs for Optimizing Distributed Inference Performance on Cooperative Edge Devices: A Genetic Algorithm Approach

Author:

Na JunORCID,Zhang Handuo,Lian Jiaxin,Zhang Bin

Abstract

To fully unleash the potential of edge devices, it is popular to cut a neural network into multiple pieces and distribute them among available edge devices to perform inference cooperatively. Up to now, the problem of partitioning a deep neural network (DNN), which can result in the optimal distributed inferencing performance, has not been adequately addressed. This paper proposes a novel layer-based DNN partitioning approach to obtain an optimal distributed deployment solution. In order to ensure the applicability of the resulted deployment scheme, this work defines the partitioning problem as a constrained optimization problem and puts forward an improved genetic algorithm (GA). Compared with the basic GA, the proposed algorithm can result in a running time approximately one to three times shorter than the basic GA while achieving a better deployment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed DNN Inference With Fine-Grained Model Partitioning in Mobile Edge Computing Networks;IEEE Transactions on Mobile Computing;2024-10

2. Optimizing DNN training with pipeline model parallelism for enhanced performance in embedded systems;Journal of Parallel and Distributed Computing;2024-08

3. PArtNNer: Platform-Agnostic Adaptive Edge-Cloud DNN Partitioning for Minimizing End-to-End Latency;ACM Transactions on Embedded Computing Systems;2024-01-10

4. A Strategy to Maximize the Utilization of AI Neural Processors on an Automotive Computing Platform;2024 IEEE International Conference on Consumer Electronics (ICCE);2024-01-06

5. Runtime Management of Artificial Intelligence Applications for Smart Eyewears;Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3