Elasto-Inertial Particle Focusing in Microchannel with T-Shaped Cross-Section

Author:

Jang Jaekyeong,Kim Uihwan,Kim Taehoon,Cho YounghakORCID

Abstract

Recently, particle manipulation in non-Newtonian fluids has attracted increasing attention because of a good particle focusing toward the mid-plane of a channel. In this research, we proposed a simple and robust fabrication method to make a microchannel with various T-shaped cross-sections for particle focusing and separation in a viscoelastic solution. SU-8-based soft lithography was used to form three different types of microchannels with T-shaped cross-sections, which enabled self-alignment and plasma bonding between two PDMS molds. The effects of the flow rate and geometric shape of the cross-sections on particle focusing were evaluated in straight microchannels with T-shaped cross-sections. Moreover, by taking images from the top and side part of the channels, it was possible to confirm the position of the particles three-dimensionally. The effects of the corner angle of the channel and the aspect ratio of the height to width of the T shape on the elasto-inertial focusing phenomenon were evaluated and compared with each other using numerical simulation. Simulation results for the particle focusing agreed well with the experimental results both in qualitatively and quantitatively. Furthermore, the numerical study showed a potential implication for particle separation depending on its size when the aspect ratio of the T-shaped microchannel and the flow rate were appropriately leveraged.

Funder

National Research Foundation of Korea

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3