Mechanical Properties and Torque/Force Generation of XP-Endo Shaper, Trunatomy, Spring Endo File, and Spring Endo Heated Finish File, Part 1

Author:

Oh SoramORCID,Jeon Bong-Ki,Chang Seok WooORCID

Abstract

We evaluated the mechanical properties and torque/force generated during canal shaping by four NiTi files with innovative designs. Each of the 52 TruNatomy Prime, XP-endo Shaper, Spring Endo files with unheated finish (Spring Endo), and Spring Endo files with heated finish (Spring H) were subjected to bending, buckling, cyclic fatigue, and torsional resistance tests (n = 10 per NiTi file type). Canal shaping was simulated with J-shaped resin blocks (n = 10). Phase transformation behavior was investigated using differential scanning calorimetry (n = 2). Statistical analysis was performed by one-way ANOVA and the Games-Howell test. Spring Endo and Spring H files showed higher bending and buckling resistances, ultimate torsional strength, and elastic modulus than TruNatomy and XP-endo Shaper (p < 0.05). XP-endo Shaper demonstrated the highest cyclic fatigue resistance and angle of rotation to fracture (p < 0.05). The elastic modulus increased in the order of XP-endo Shaper, TruNatomy Prime, Spring H, and Spring Endo. During simulated canal shaping, XP-endo Shaper generated greater clockwise torque and less screw-in force compared to Spring Endo files, with superior cutting ability. TruNatomy Prime generated the least clockwise torque and screw-in force. At room temperature, TruNatomy and XP-endo Shaper files consisted of mixed phases of austenite, martensite, and R-phase; Spring H files consisted of martensite; and Spring Endo files consisted of austenite.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3