Abstract
Fault early warning is a challenge in the field of operation and maintenance. Considering the improvement of accuracy and real-time standards, as well as the explosive growth of operation and maintenance data, traditional manual experience and static threshold can no longer meet the production requirements. This research fully digs into the difficulties in fault early warning and provides targeted solutions in several aspects, such as difficulty in feature extraction, insufficient prediction accuracy, and difficulty in determining alarm threshold. The TCAG model proposed in this paper creatively combines the spatiotemporal characteristics and topological characteristics of specific time series data to apply to time series prediction and gives the recommended dynamic threshold interval for fault early warning according to the prediction value. A data comparison experiment of a core router of Ningxia Electric Power Co., Ltd. shows that the combination of topological data analysis (TDA) and convolutional neural network (CNN) enables the TCAG model to obtain superior feature extraction capability, and the support of the attention mechanism improves the prediction accuracy of the TCAG model compared to the benchmark models.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LightGBM robust optimization algorithm based on topological data analysis;Proceedings of the 2024 International Conference on Computer and Multimedia Technology;2024-05-24
2. A Study on Deep Learning Frameworks to Understand the Real Time Fault Detection and Diagnosis in IT Operations with AIOPs;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20