Abstract
In this work, tungsten nitrides sputtered at different powers supplied to a W target (300 W, 500 W, 700 W) and proposed for solar thermal applications as part of solar absorbers, as active and robust materials for capacity energy storage and as plasma-facing materials were annealed in vacuum at medium-high temperatures (470 °C, 580 °C) and characterized by means of X-ray diffraction (XRD), AFM, micro-Raman, FTIR, UV–VIS–-NIR, sheet, surficial energy and wetting angle measurements. From the overall set of analyses, some important modifications and differences between samples after annealing emerged (which will be useful for selecting them for specific applications) and have been correlated to sputtered W metallic clusters’ ability to adsorb, form complexes with and react with the strong N2 triple bond under the various plasma conditions of a reactive sputtering process. In particular, the 300 W film of poor crystalline quality as deposited, after annealing released entrapped nitrogen and retained its W2N structure up to a temperature of 580 °C. Despite there being no phase transition, there was an increase in sheet resistance, which is detrimental because the preservation of metallic character is an important requisite for the proposed applications. The 500 W film had a stable crystalline structure and a metallic character unmodified by increasing temperature. The 700 W film, whose structure as deposited was almost amorphous, underwent the most severe modification after annealing: crystallizing, disproportioning and giving rise to a composite and porous nature (W + WNx) not ideal for spectrally selective coating applications, but useful for tailoring capacitive energy storage devices, or for catalysts for hydrogen evolution reactions (as an alternative to platinum) in alkaline water electrolysis.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference25 articles.
1. Concentrating Solar Power
2. Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature;Antonaia;Sol. Energy Mater. Sol. Cells,2010
3. Highly thermally stable solar selective coatings with W as reflector and WN-AlN as absorber layer;Addonizio;Proceedings of the E-MRS Spring 2015,2015
4. Solar Selective Absorber Based on Double Nitride Composite Material and Process for its Preparation;Antonaia;U.S. Patent,2016
5. Trends and Control in the Nitridation of Transition-Metal Surfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献