Author:
Yang Kaifang,Xu Changjie,Chi Minliang,Wang Pei
Abstract
The dewatering of foundation pits with a suspended waterproof curtain causes different groundwater drawdowns inside and outside the pit, resulting in the drawdown difference between the inside and outside the pit. Maintaining a groundwater drawdown difference between the inside and outside of a foundation pit can eliminate the adverse effects of dewatering on the surrounding environment. According to previous studies on unsteady flow, an analytical solution of the groundwater drawdown with a suspended waterproof curtain under unsteady flow has been proposed. The analytical solution of unsteady flow and the formula of groundwater drawdown difference with a suspended waterproof curtain were validated by comparing pumping tests and finite-element method (FEM), in which a good agreement was observed. The magnitude of the drawdown difference generally represents the extent of surrounding groundwater affected by groundwater drawdown inside the pit. This paper also investigated the effects of sensitivity parameters on the drawdown difference for minimizing the effect of surrounding environment. During the process of dewatering with a suspended waterproof curtain, the groundwater drawdown (Sh) should not exceed the length of the waterproof curtain (L), and the optimal radius of foundation pit (Rw) and length of waterproof curtain (L) were found, i.e., Rw/H0 = 0.781 and L/H0 = 0.813 (H0 is 32 m). Beyond these values, the drawdown difference tends to be stable. The drawdown difference is also significantly affected by the dewatering time. When t < 48 h, the groundwater drawdown difference decreases rapidly; when t > 48 h, the groundwater drawdown difference stabilizes.
Funder
The National Science Fund for Distinguished Young Scholars
The National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献