Analytical Analysis of the Groundwater Drawdown Difference Induced by Foundation Pit Dewatering with a Suspended Waterproof Curtain

Author:

Yang Kaifang,Xu Changjie,Chi Minliang,Wang Pei

Abstract

The dewatering of foundation pits with a suspended waterproof curtain causes different groundwater drawdowns inside and outside the pit, resulting in the drawdown difference between the inside and outside the pit. Maintaining a groundwater drawdown difference between the inside and outside of a foundation pit can eliminate the adverse effects of dewatering on the surrounding environment. According to previous studies on unsteady flow, an analytical solution of the groundwater drawdown with a suspended waterproof curtain under unsteady flow has been proposed. The analytical solution of unsteady flow and the formula of groundwater drawdown difference with a suspended waterproof curtain were validated by comparing pumping tests and finite-element method (FEM), in which a good agreement was observed. The magnitude of the drawdown difference generally represents the extent of surrounding groundwater affected by groundwater drawdown inside the pit. This paper also investigated the effects of sensitivity parameters on the drawdown difference for minimizing the effect of surrounding environment. During the process of dewatering with a suspended waterproof curtain, the groundwater drawdown (Sh) should not exceed the length of the waterproof curtain (L), and the optimal radius of foundation pit (Rw) and length of waterproof curtain (L) were found, i.e., Rw/H0 = 0.781 and L/H0 = 0.813 (H0 is 32 m). Beyond these values, the drawdown difference tends to be stable. The drawdown difference is also significantly affected by the dewatering time. When t < 48 h, the groundwater drawdown difference decreases rapidly; when t > 48 h, the groundwater drawdown difference stabilizes.

Funder

The National Science Fund for Distinguished Young Scholars

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3