Shear Response of Lime/GGBS-Stabilised High-Sulphate-Bearing Clay under Consolidated-Undrained Conditions

Author:

Eyo EyoORCID,Abbey SamuelORCID

Abstract

This study investigated the consolidated undrained shear behaviour of a stabilised high-sulphate soil system. Lime was used to stabilise the soil with the inclusion of ground granulated blast furnace slag (GGBS) as an ettringite suppressor. Both volumetric changes and shear strength responses of the stabilised soil containing various proportions (10%, 20%, and 30%) of sulphates were examined with corresponding pore pressure developments and stress path changes using a modern computer-controlled stress-path triaxial system. Results indicated greater volume change for the non-stabilised soils containing lower amounts of sulphates. This shows that calcium sulphate, which is a soluble salt with relatively less alkalinity, is capable of binding particles of soils together. The amount of volume change increased with the quantity of sulphates in the stabilised soil even though the quantity of GGBS utilised as an ettringite suppressor was twice more than that of the lime. This was attributed to the unreacted gypsum (calcium sulphate) used, which resulted in a decrease in the overall specific weight, thus affecting the texture of the stabilised mix and causing an increment in pore sizes. Generally, the stabilised sulphate soils showed some initial ductile responses with the yielding followed by an almost perfectly plastic behaviour up to about 6–8% of the strain before finally undergoing small amounts of strain-softening. Lastly, higher levels of plastic failure were achieved and at higher constant effective stress for the stabilised soils containing lower percentages of sulphates.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3