Solar Ultraviolet Irradiance Characterization under All Sky Conditions in Burgos, Spain

Author:

García-Rodríguez SolORCID,García IgnacioORCID,García-Rodríguez AnaORCID,Díez-Mediavilla Montserrat,Alonso-Tristán CristinaORCID

Abstract

Solar Ultraviolet Radiation (UVR), which is identified as a major environmental health hazard, is responsible for a variety of photochemical reactions with direct effects on urban and aquatic ecosystems, human health, plant growth, and the deterioration of industrial systems. Ground measurements of total solar UVR are scarce, with low spatial and temporal coverage around the world, which is mainly due to measurement equipment maintenance costs and the complexities of equipment calibration routines; however, models designed to estimate ultraviolet rays from global radiation measurements are frequently used alternatives. In an experimental campaign in Burgos, Spain, between September 2020 and June 2022, average values of the ratio between horizontal global ultraviolet irradiance (GHUV) and global horizontal irradiance (GHI) were determined, based on measurements at ten-minute intervals. Sky cloudiness was the most influential factor in the ratio, more so than any daily, monthly, or seasonal pattern. Both the CIE standard sky classification and the clearness index were used to characterize the cloudiness conditions of homogeneous skies. Overcast sky types presented the highest values of the ratio, whereas the clear sky categories presented the lowest and most dispersed values, regardless of the criteria used for sky classification. The main conclusion, for practical purposes, was that the ratio between GHUV and GHI can be used to model GHUV.

Funder

Spanish Ministry of Science and Innovation

Junta de Castilla y León

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3