SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans

Author:

Yamanakkanavar Nagaraj,Choi Jae Young,Lee BumshikORCID

Abstract

In this paper, we propose a novel squeeze M-SegNet (SM-SegNet) architecture featuring a fire module to perform accurate as well as fast segmentation of the brain on magnetic resonance imaging (MRI) scans. The proposed model utilizes uniform input patches, combined-connections, long skip connections, and squeeze–expand convolutional layers from the fire module to segment brain MRI data. The proposed SM-SegNet architecture involves a multi-scale deep network on the encoder side and deep supervision on the decoder side, which uses combined-connections (skip connections and pooling indices) from the encoder to the decoder layer. The multi-scale side input layers support the deep network layers’ extraction of discriminative feature information, and the decoder side provides deep supervision to reduce the gradient problem. By using combined-connections, extracted features can be transferred from the encoder to the decoder resulting in recovering spatial information, which makes the model converge faster. Long skip connections were used to stabilize the gradient updates in the network. Owing to the adoption of the fire module, the proposed model was significantly faster to train and offered a more efficient memory usage with 83% fewer parameters than previously developed methods, owing to the adoption of the fire module. The proposed method was evaluated using the open-access series of imaging studies (OASIS) and the internet brain segmentation registry (IBSR) datasets. The experimental results demonstrate that the proposed SM-SegNet architecture achieves segmentation accuracies of 95% for cerebrospinal fluid, 95% for gray matter, and 96% for white matter, which outperforms the existing methods in both subjective and objective metrics in brain MRI segmentation.

Funder

Chosun University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3