Affiliation:
1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
Abstract
Due to the rapid sintering and densification, spark plasma sintering (SPS) technology can significantly inhibit grain coarsening, and obtain alloy with high density and uniform microstructure. Tantalum-tungsten (Ta-W) alloy had been fabricated by powder metallurgy and consolidated by SPS at temperature of 1600 °C for 5 min at the pressure of 35 MPa. Specimens of pure Ta and four tantalum-based alloys with different concentrations of tungsten ranging from 2.5 to 10 were used to investigate the behavior of developed alloys. X-ray diffraction analyses were applied for all compositions of Ta-W alloys. The morphology of fracture sections was analyzed by scanning electron microscopy (SEM). Morphologies of initial Ta and W powders, microstructures of sintering Ta-W alloy and tensile fractographs of the specimens with different components were observed. When the concentrations of tungsten were distributed with 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt%, the measured densities were 16.151 g/cm3, 15.756 g/cm3, 15.711 g/cm3, 15.665 g/cm3 and 15.670 g/cm3 respectively. As the content of tungsten increased, the density of the alloy decreased and the grain was refined, meanwhile the micro-hardness of the samples increased gradually. Furthermore, the addition of tungsten could greatly enhance the strength of the alloys, but decrease the plasticity of the alloys. Ta-2.5 wt%W shows the maximum bending strength with a value of 832.29 MPa, while the percentage of transgranular fracture increased with the increase of tungsten content.
Funder
the National Natural Science Foundation of China
the Open Fund of State Key Laboratory of Advanced Welding and Joining at Harbin Institute of Technology
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献