Investigation of the Y Effect on the Microstructure Response and Radiation Hardening of PM V-4Cr-4Ti Alloys after Irradiation with D Ions

Author:

Zhang Yifan123,Sun Xiaoyuan1,Ma Bing13,Wang Jing1,Luo Laima1,Wu Yucheng1

Affiliation:

1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China

2. School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei 230009, China

Abstract

In the current work, an analysis of the effects of Y on the radiation hardening and microstructure response of a V-4Cr-4Ti alloy has been conducted after 30 keV D ion irradiation at room temperature using transmission electron microscopy (TEM) and nanoindentation. The results show that the formation of large Y2O3 and small Y2V2O7 nanoparticles was confirmed, indicating that the addition of Y reduces the amount of dissolved oxygen. The addition of Y has been shown to affect the radiation-induced dislocation loops, radiation hardening, and Ti-rich segregation of the V-4Cr-4Ti alloy. With the addition of Y, the mean size of the radiation-induced dislocation loop decreased, which may result from the strong sink strength of the nanoparticle/matrix interface, interactions between Y atoms and SIA clusters, and the strong binding energy of vacancy–oxygen pairs. Some particles with core–shell structures were observed after ion irradiation, where Ti-rich segregations at the nanoparticle/matrix interface were confirmed. These results indicate that Y might promote abnormal segregation. Possible causes for this include the lower interface energy at the particle/matrix interface and the interaction between oxygen and solute atoms.

Funder

National MCF Energy R&D Program

National Key Research and Development Program of China

National Science Foundation of China

Natural Science Foundation of Anhui Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3