The Effect of Black-Dot Defects on FeCrAl Radiation Hardening

Author:

Sun Jian1,Yu Miaosen1,Wei Zhixian1,Dai Hui1ORCID,Ma Wenxue1,Dong Yibin1ORCID,Liu Yong1,Gao Ning12ORCID,Wang Xuelin1ORCID

Affiliation:

1. Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China

2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

FeCrAl is regarded as one of the most promising cladding materials for accident-tolerant fuel at nuclear fission reactors due to its comprehensive properties of inherent corrosion resistance, excellent irradiation resistance, high-temperature oxidation resistance, and stress corrosion cracking resistance. In this work, the irradiation response of FeCrAl irradiated by 2.4 MeV He2+ ions with a fluence of 1.1 × 1016 cm−2 at room temperature was studied using X-ray diffraction, transmission electron microscopy, and nanoindentation. The characterization results of structural and mechanical properties showed that only black-dot defects exist in irradiated FeCrAl samples, and that the hardness of the irradiated samples was 11.5% higher than that of the unirradiated samples. Similar to other types of radiation defects, black-dot defects acted as fixed defect obstacles and hindered the movement of slip dislocations moving under the applied load, resulting in a significant increase in the hardness of FeCrAl. Importantly, this work points out that irradiation-induced black-dot defects can significantly affect the mechanical properties of materials, and that their contribution to radiation hardening cannot be ignored.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3