First-Principles Investigation on Phase Stability, Mechanical Properties, Bonding Characteristic and Slip Properties of Ti-Co Binary Intermetallic Compounds

Author:

Zeng Fanlin12ORCID,Chen Mengjie2,Wang Hongbo2,Peng Hexiang2,Li Bei1,Huang Jian2ORCID

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China

Abstract

Ti-Co binary intermetallic compounds have attracted lots of attention due to their excellent toughness and interesting anomalous ductility. However, systematic theoretical calculations of alloy properties of different Ti-Co compounds have not been properly investigated yet. In this work, first-principles calculations were performed to study the phase stability, mechanical properties bonding characteristic and slip properties of five Ti-Co binary compounds. The negative enthalpy of formation and cohesive energy showed that all the Ti-Co binary compounds were thermodynamically stable, and TiCo is the most mechanically stable one. According to the elastic stability criterion, these compounds are also mechanically stable. In addition, the mechanical anisotropy of Ti-Co compounds was analyzed by the anisotropy index and the three-dimensional surface of Young’s modulus, where Ti2Co shows the strongest anisotropy, and TiCo2(h) has weakest anisotropy. The phonon calculations of these compounds also show that all five Ti-Co compounds are thermodynamically stable. The density of states (DOS) and differential charge density distributions were analyzed to identify the chemical bonding characteristics of the Ti-Co binary compounds, which exhibit metal and covalent-like bonding and different magnetic properties. Finally, the plastic deformation mechanism of Ti-Co compounds was understood by calculating the generalized stacking fault energy (GSFE) of different slip systems. The anomalous ductility of TiCo and TiCo3 mainly arises from the complex slip system and the lower slip energy barrier of the compounds.

Funder

National Natural Science Foundation of China

Science and Technology Committee of Shanghai Municipal

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3