A New Bending Force Formula for the V-Die Bending Process

Author:

Doungmarda Kongkiet1,Thipprakmas Sutasn1

Affiliation:

1. Department of Tool and Materials Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

Abstract

The V-die bending force is an important parameter in respect of press machine capacity selection, but it has not been the focus of previous research. Furthermore, while the various modified formulas proposed in previous research were calculated using V-die bending theory, they are insufficient for predicting the actual V-die bending force. Based on the actual V-die bending mechanism, a new V-die bending force formula is proposed in this study, in which bending is generated not only in the bending allowance zone but also on the legs next to the bending allowance zone. Therefore, the bending force in these zones must be carefully considered. The finite element method (FEM) was used as an effective technique to clearly determine the actual V-die bending mechanism and to modify and develop a new V-die bending force formula. Laboratory experiments were carried out to validate the FEM simulation results as well as to confirm the accuracy of the proposed new V-die bending force formula. Two types of workpiece material, aluminum AA1100-O (JIS) and medium carbon-steel sheet-grade SPCC (JIS), were used as test materials. The results clearly show that the new V-die bending force formula offers more accuracy in V-die bending force prediction than predictions based on past formulas. The error in the V-die bending forces predicted using the new formula was approximately 5% compared with those of the experimental works.

Funder

King Mongkut’s University of Technology Thonburi

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3