Recovery of Rare Earth Elements from Spent NdFeB Magnets: Metal Extraction by Molten Salt Electrolysis (Third Part)

Author:

Chung Hanwen1ORCID,Prasakti Laras12,Stopic Srecko R.1,Feldhaus Dominic3,Cvetković Vesna S.4ORCID,Friedrich Bernd1ORCID

Affiliation:

1. IME Process Metallurgy and Metal Recycling, RWTH Aachen University, 52056 Aachen, Germany

2. Chemical Engineering Department, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

3. TRIMET Aluminium SE, Aluminiumalle 1, 45356 Essen, Germany

4. Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia

Abstract

The results obtained from the work on a concept of a recycling process for NdFeB magnets to recover rare earth elements for remanufacturing similar magnets are presented. This paper investigates the viability of extracting rare earth metals from magnet recycling-derived oxide (MRDO) by means of molten salt electrolysis. The MRDO was produced from spent NdFeB magnets through oxidation in air and subsequently carbothermic reduction under an 80 mbar Ar gas atmosphere. This MRDO contained roughly 33 wt.% Nd and 10 wt.% Pr. The electrochemical reduction process of the MRDO on molybdenum electrodes in NdF3 + LiF and NdF3 + PrF3 + LiF fused salts systems was investigated by cyclic voltammetry and chronoamperometry measurements. The resulting electrolytes and electrodes were examined after potentiostatic deposition by scanning electron microscopy (SEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), and X-ray diffraction (XRD) analysis. The electrodeposited metals appeared to accumulate on the cathode and X-ray diffraction analysis confirmed the formation of metallic Nd and Pr on the working substrate. The suitability of the obtained alloy intended for the remanufacturing of NdFeB magnets was then evaluated.

Funder

Federal Ministry for Economic Affairs and Climate Action

Sustainable recovery of rare earth elements (Nd, Pr, Dy) from spent magnets

Bilateral research project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3