The Effect of the Bridge’s Angle during Porthole Die Extrusion of Aluminum AA6082

Author:

Wang Yu1,Wells Mary A.1

Affiliation:

1. Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada

Abstract

During the porthole die extrusion, the separated metal streams are welded together in the welding chamber. The conditions under which this occurs and the integrity of weld seam in the extrudate are impacted by the design of the bridge, including features such as its shape and dimensions. In this research, the commercial finite element method (FEM) software package, DEFORM, was used to run a series of simulation experiments in order to quantitatively understand the relationship between the bridge design and the thermal mechanical history experienced by the material during welding and the impact this has on final weld seam quality. The bridge can be roughly divided into two parts: the lower part, close to the welding chamber, and the upper part, which initially split the billet into metal streams. The results showed that increasing the lower bridge angle led to slightly higher extrusion loads and higher extrudate exit temperatures. As the lower bridge angle increased, creating a streamlined profile to a blunt profile, a dead metal zone formed under the bridge that produced higher strains near the surface of the material. In contrast, changes to the geometry of the upper bridge had little effect on the porthole die extrusion process or the thermal mechanical conditions experienced by the material.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3