Laser-Induced Iridescent Steel Surfaces with Moderate Reflectance

Author:

Wang Xuyang1,Huang Zhongjia2,Shi Xinying1ORCID

Affiliation:

1. School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

2. Anhui Key Laboratory of High-Performance Non-Ferrous Metal Materials, Anhui Polytechnic University, Wuhu 241000, China

Abstract

Laser-induced coloration on metallic surfaces has emerged as a clean technology to prepare visual designs. After laser processing, the metallic surface is covered by typical periodically repeated microstructures, which interact with visible light and bring iridescent appearance to the laser markings due to the structural color effect. Although many studies have focused on this topic, the necessity of iridescent surfaces with moderate optical reflectance still needs to be addressed. In general, structural colors are shiny with high brightness. There are troubles in certain cases because shiny markings with excessive reflectance may be harmful to human eyes. In this work, we prepared iridescent an AISI444 stainless steel surface via femtosecond laser processing. By studying the influence of surface microstructures on the coloration and reflectance, suitable laser parameters for producing markings with moderate reflectance were discussed. The contribution of intrinsic colors of the chemical compositions in the surface was further analyzed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Higher Education Institutions of China

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3