Chemical Inhomogeneity from the Atomic to the Macroscale in Multi-Principal Element Alloys: A Review of Mechanical Properties and Deformation Mechanisms

Author:

Zhu Jiaqi1,Li Dongfeng2,Zhu Linli3,He Xiaoqiao14,Sun Ligang2

Affiliation:

1. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China

2. School of Science, Harbin Institute of Technology, Shenzhen 518055, China

3. Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China

4. Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China

Abstract

Due to their compositional complexity and flexibility, multi-principal element alloys (MPEAs) have a wide range of design and application prospects. Many researchers focus on tuning chemical inhomogeneity to improve the overall performance of MPEAs. In this paper, we systematically review the chemical inhomogeneity at different length scales in MPEAs and their impact on the mechanical properties of the alloys, aiming to provide a comprehensive understanding of this topic. Specifically, we summarize chemical short-range order, elemental segregation and some larger-scale chemical inhomogeneity in MPEAs, and briefly discuss their effects on deformation mechanisms. In addition, the chemical inhomogeneity in some other materials is also discussed, providing some new ideas for the design and preparation of high-performance MPEAs. A comprehensive understanding of the effect of chemical inhomogeneity on the mechanical properties and deformation mechanisms of MPEAs should be beneficial for the development of novel alloys with desired macroscopic mechanical properties through rationally tailoring chemical inhomogeneity from atomic to macroscale in MPEAs.

Funder

The Research Grants Council of the Hong Kong Special Administrative Region, China

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Municipal Science and Technology Innovation Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3