An Algorithm for Real-Time Aluminum Profile Surface Defects Detection Based on Lightweight Network Structure

Author:

Tang Junlong1,Liu Shenbo1,Zhao Dongxue1,Tang Lijun1,Zou Wanghui1,Zheng Bin2

Affiliation:

1. School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China

2. School of Computer and Communications Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Surface defects, which often occur during the production of aluminum profiles, can directly affect the quality of aluminum profiles, and should be monitored in real time. This paper proposes an effective, lightweight detection method for aluminum profiles to realize real-time surface defect detection with ensured detection accuracy. Based on the YOLOv5s framework, a lightweight network model is designed by adding the attention mechanism and depth-separable convolution for the detection of aluminum. The lightweight network model improves the limitations of the YOLOv5s framework regarding to its detection accuracy and detection speed. The backbone network GCANet is built based on the Ghost module, in which the Attention mechanism module is embedded in the AC3Ghost module. A compression of the backbone network is achieved, and more channel information is focused on. The model size is further reduced by compressing the Neck network using a deep separable convolution. The experimental results show that, compared to YOLOv5s, the proposed method improves the mAP by 1.76%, reduces the model size by 52.08%, and increases the detection speed by a factor of two. Furthermore, the detection speed can reach 17.4 FPS on Nvidia Jeston Nano’s edge test, which achieves real-time detection. It also provides the possibility of embedding devices for real-time industrial inspection.

Funder

Open Research Fund of Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YOLOv5s-DNF: A lighter and real-time method for detecting surface defects in steel;2023 4th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2023-05-12

2. FPGA Optimized Accelerator of DCNN with Fast Data Readout and Multiplier Sharing Strategy;Computers, Materials & Continua;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3