Detecting High-Resolution Adversarial Images with Few-Shot Deep Learning

Author:

Zhao Junjie1,Wu Junfeng2,Adeke James Msughter1,Qiao Sen1,Wang Jinwei23

Affiliation:

1. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450003, China

Abstract

Deep learning models have enabled significant performance improvements to remote sensing image processing. Usually, a large number of training samples is required for detection models. In this study, a dynamic simulation training strategy is designed to generate samples in real time during training. The few adversarial examples are not only directly involved in the training but are also used to fit the distribution model of adversarial noise, helping the real-time generated samples to be similar to adversarial examples. The noise of the training samples is randomly generated according to the distribution model, and the random variation of training inputs reduces the overfitting phenomenon. To enhance the detectability of adversarial noise, the input model is no longer a normalized image but a JPEG error image. Experiments show that with the proposed dynamic simulation training strategy, common classification models such as ResNet and DenseNet can effectively detect adversarial examples.

Funder

National Natural Science Foundation of China

plan for Scientific Talent of Henan Provinc

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3