Passive 3D Imaging Method Based on Photonics Integrated Interference Computational Imaging System

Author:

Ge Ben12ORCID,Yu Qinghua1ORCID,Chen Jialiang12,Sun Shengli1

Affiliation:

1. Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai Institute of Technical Physics of Chinese Academy of Sciences, Shanghai 200083, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Planetary, lunar, and deep space exploration has become the frontier of remote sensing science, and three-dimensional (3D) positioning imaging technology is an important part of lunar and deep space exploration. This paper presents a novel passive 3D imaging method based on the photonics integrated interference computational imaging system. This method uses a photonics integrated interference imaging system with a complex lens array. The midpoints of the interference baselines formed by these lenses are not completely overlapped. The distance between the optical axis and the two lenses of the interference baseline are not equal. The system is used to obtain the complex coherence factor of the object space at a limited working distance, and the image evaluation optimization algorithm is used to obtain the clear images and 3D information of the targets of interest. The simulation results show that this method is effective for the working scenes with targets located at single or multiple limited working distances. The sharpness evaluation function of the target presents a good unimodality near its actual distance. The experimental results of the interference of broad-spectrum light show that the theoretical basis of this method is feasible.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3