Spatio-Temporal Dynamic Characteristics of Carbon Use Efficiency in a Virgin Forest Area of Southeast Tibet

Author:

Yang Ziyan1ORCID,Yu Qiang1ORCID,Yang Ziyu1,Peng Anchen1,Zeng Yufan1,Liu Wei1,Zhao Jikai1,Yang Di2ORCID

Affiliation:

1. College of Forestry, Beiing Forestry University, Beiing 100083, China

2. Center for Geographic Information, University of Wyoming, Laramie, WY 82071, USA

Abstract

The sequestration of carbon in forests plays a crucial role in mitigating global climate change and achieving carbon neutrality goals. Carbon use efficiency (CUE) is an essential metric used to evaluate the carbon sequestration capacity and efficiency of Vegetation. Previous studies have emphasized the importance of assessing CUE at specific regions and times to better understand its spatiotemporal variations. The southeastern region of Tibet in the Qinghai-Tibet Plateau is recognized as one of the most biodiverse areas in China and globally, characterized by diverse vegetation types ranging from subtropical to temperate. In this study, we focused on Nyingchi, which is the largest virgin forest area in southeast Tibet, to explore the spatial-temporal dynamic characteristics of regional CUE based on MODIS remote sensing products. The following results were obtained: (1) On a monthly scale, regional CUE exhibits significant seasonal variations, with varying patterns among different vegetation types. Specifically, the fluctuation of CUE is the lowest in high-altitude forest areas and the greatest in grasslands and barrens. On an annual scale, forests exhibit higher fluctuations than areas with sparse vegetation and the overall volatility of CUE increased over the past 11 years. (2) There are regional differences in the trend of CUE changes, with a substantial downward trend in the Himalayan region and a significant upward trend in the residual branches of the Gangdise Mountains. More than 75% of the regions exhibit no persistent trend in CUE changes. (3) Vegetation type is the main determinant of the range and characteristics of vegetation CUE changes, while the geographical location and climatic conditions affect the variation pattern. CUE in the southern and northern regions of Nyingchi at 28.5°N exhibits different responses to temperature and precipitation changes, with temperature having a more significant impact on CUE.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Beijing Forestry University Undergraduate Training Programs for Innovationand Entrepreneurship

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3