An Accurate Forest Fire Recognition Method Based on Improved BPNN and IoT

Author:

Zheng Shaoxiong1,Gao Peng2,Zhou Yufei3,Wu Zepeng3,Wan Liangxiang1,Hu Fei1,Wang Weixing4,Zou Xiangjun5,Chen Shihong1

Affiliation:

1. Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China

2. College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China

3. Guangdong Academy of Forestry Sciences, Guangzhou 510520, China

4. Zhujiang College, South China Agricultural University, Guangzhou 510642, China

5. Foshan-Zhongke Innovation Research Institute of Intelligent Agriculture and Robotics, Foshan 52800, China

Abstract

Monitoring and early warning technology for forest fires is crucial. An early warning/monitoring system for forest fires was constructed based on deep learning and the internet of things. Forest fire recognition was improved by combining the size, color, and shape characteristics of the flame, smoke, and area. Complex upper-layer fire-image features were extracted, improving the input conversion by building a forest fire risk prediction model based on an improved dynamic convolutional neural network. The proposed back propagation neural network fire (BPNNFire) algorithm calculated the image processing speed and delay rate, and data were preprocessed to remove noise. The model recognized forest fire images, and the classifier classified them to distinguish images with and without fire. Fire images were classified locally for feature extraction. Forest fire images were stored on a remote server. Existing algorithms were compared, and BPNNFire provided real-time accurate forest fire recognition at a low frame rate with 84.37% accuracy, indicating superior recognition. The maximum relative error between the measured and actual values for real-time online monitoring of forest environment indicators, such as air temperature and humidity, was 5.75%. The packet loss rate of the forest fire monitoring network was 5.99% at Longshan Forest Farm and 2.22% at Longyandong Forest Farm.

Funder

Scientific Research Project of Guangdong Eco-Engineering Polytechnic

Special fund project of Guangdong science and technology innovation strategy

Characteristic Innovation Projects of Department of Education of Guangdong Province

Guangdong Basic and Applied Basic Research Foundation

Guangdong Forestry Science and Technology Innovation Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3