Multi-Factorized Semi-Covariance of Stock Markets and Gold Price

Author:

Shi Yun,Yang Lin,Huang Mei,Huang JunORCID

Abstract

Complex models have received significant interest in recent years and are being increasingly used to explain the stochastic phenomenon with upward and downward fluctuation such as the stock market. Different from existing semi-variance methods in traditional integer dimension construction for two variables, this paper proposes a simplified multi-factorized fractional dimension derivation with the exact Excel tool algorithm involving the fractional center moment extension to covariance, which is a complex parameter average that is a multi-factorized extension to Pearson covariance. By examining the peaks and troughs of gold price averages, the proposed algorithm provides more insight into revealing underlying stock market trends to see who is the financial market leader during good economic times. The calculation results demonstrate that the complex covariance is able to distinguish subtle differences among stock market performances and gold prices for the same field that the two variable covariance may overlook. We take London, Tokyo, Shanghai, Toronto, and Nasdaq as the representative examples.

Publisher

MDPI AG

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effects of Macroeconomic Variables on the BIST 100 Index: ARDL and NARDL Approaches;International Journal of Public Finance;2024-06-30

2. Multivariate Polynomial Public Key Digital Signature Trefoil Knot Algorithm;2024 13th International Conference on Communications, Circuits and Systems (ICCCAS);2024-05-10

3. Machine Learning for Prediction of Emotion Towards Digital Assets;Lecture Notes in Electrical Engineering;2024

4. Multivariate Polynomial Public Key Digital Signature Algorithm: Semi-covariance Analysis and Performance Test over 5G Networks;2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob);2023-06-21

5. Measuring investor sentiment of China’s growth enterprises market with ERNIE;Procedia Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3