Human-Dominated Land Use Change in a Phosphate Mining Area and Its Impact on the Water Environment

Author:

Zhang Jing,Liu Mingliang,Song YongyuORCID

Abstract

The Peace River is a critical water source in southwest Florida, United States. The watershed contains many phosphate mines that decrease water safety. Whether phosphate mining leads to a reduction in surface runoff and affects water quality in the Peace River Basin has been a highly controversial subject. Thus, the environmental impacts of phosphate mining in the Peace River were assessed. The Soil and Water Assessment Tool (SWAT) model is a widely used physical-mechanism-based distributed hydrological model that uses spatial distribution data, such as topography, soil, land use, and weather, to predict water, sediment, nutrient, pesticide, and fecal bacteria production. Based on a SWAT model, runoff, total nitrogen (TN) load, and total phosphorus (TP) load at the outlet of the Peace River Basin from 2001 to 2018 were investigated. The applicability of the four uncertainty methods in the hydrological simulation of the basin was assessed. The runoff at five stations in a specified mining area was simulated to analyze the impact of human-dominated land use changes caused by phosphate mining on the water environment. The results for the pre- and post-mining periods showed that the land use transfer in the study area experienced large fluctuations and that the land use change had a significant impact on the runoff (the outlet site decreased by 44.14%), indicating that phosphate mining has a significant effect on reducing runoff in the basin. An analysis of three scenarios (pre-mining [s1], post-mining [s2], and reclamation [s3]) showed that during s1–s2–s3, the change in mining land area is large (increased by 142.86%) and that TN and TP loads increased, indicating that human activities mainly affect the water environment through phosphate mining. This is mainly because a large amount of wastewater containing high concentrations of inorganic chemicals, which is produced in the process of phosphate mining and processing, overflows directly or from the sedimentation tank into the river. In summary, the simulation results showed that the changes in runoff and pollutants were attributed to phosphate rock mining. Therefore, strengthening the management of phosphate mining and adopting effective protection measures is of substantial significance for the effective protection of water resources. By analyzing the measured data, this study can help people understand more actual situations and further evaluate the impact of phosphate mining activities on the water environment. The simulation results can also be used to predict the future trend of runoff and water quality in the Peace River Basin and provide a decision-making basis for government management departments to issue water resource protection measures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3