Author:
Li Tianyu,Pang Haijun,Wu Qiong,Huang Meifen,Xu Jiajun,Zheng Liping,Wang Baoling,Qiao Yongfeng
Abstract
Optical signals of pH probes mainly driven from the formation or rupture of covalent bonds, whereas the changes in covalent bonds usually require higher chemical driving forces, resulting in limited sensitivity and reversibility of the probes. The exploration of high-performance pH probes has been a subject of intense investigation. Herein, a new pH probe has been developed, with optical property investigation suggesting the probe has excellent signal-to-noise ratio, and fluorescence intensity shows exponential growth, combined with a visible color change, as pH increased from 5.1 to 6.0; Moreover, the probe has outstanding stability and reversibility, with more than 90% of the initial signal intensity remaining after 30 cycles. In order to better understand the special fluorescence behavior of the reported probe, the non-halogenated isomer is introduced for comparison, combined with the results of structural analysis, quantitative calculation and optical experiments, and the possible mechanism of the special supramolecular aggregation-caused quenching effect induced by the halogen atom is discussed.
Funder
Joint Basic Research Program (partial) of Yunnan Provincial Undergraduate Universities
National Nature Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献