RNAi Efficiency through dsRNA Injection Is Enhanced by Knockdown of dsRNA Nucleases in the Fall Webworm, Hyphantria cunea (Lepidoptera: Arctiidae)

Author:

Zhang Xun,Fan Zhizhi,Wang Qinghua,Kong XiangboORCID,Liu FuORCID,Fang Jiaxing,Zhang SufangORCID,Zhang Zhen

Abstract

RNA interference (RNAi) technology is a promising approach used in pest control. The efficiency of RNAi varies considerably among different insect species, and growing evidence suggests that degradation of double-stranded RNA (dsRNA) prior to uptake is an important factor that limits RNAi efficiency in insects. Our recent work on fall webworm (Hyphantria cunea), an important invasive pest in China, showed a relatively low silencing efficiency of RNAi through dsRNA injection, which is considered the most feasible dsRNA delivery method for inducing RNAi, and the factors involved in the mechanism remain unknown. Herein, we first detected the dsRNA-degrading activity in the hemolymph and gut content of H. cunea in ex vivo assays and observed rapid degradation of dsRNA, especially in the hemolymph, which was complete within only 10 min. To determine whether dsRNA degradation could contribute to the low effectiveness of RNAi in H. cunea, four dsRNA nuclease (dsRNase) genes, HcdsRNase1, HcdsRNase2, HcdsRNase3, and HcdsRNase4, were identified by homology searching against the H. cunea transcriptome database, and their transcript levels were subsequently investigated in different tissues, developmental stages, and after dsRNA injection. Our results show that HcdsRNases are highly expressed mainly in gut tissues and hemolymph, and the expression of HcdsRNase3 and HcdsRNase4 were significantly upregulated by dsGFP induction. RNAi-of-RNAi studies, using HcCht5 as a reporter gene, demonstrated that silencing HcdsRNase3 and HcdsRNase4 significantly increases RNAi efficacy via dsHcCht5 injection, and co-silencing these two HcdsRNase genes results in a more significant improvement in efficacy. These results confirm that the RNAi efficacy in H. cunea through dsRNA injection is certainly impaired by dsRNase activity, and that blocking HcdsRNases could potentially improve RNAi, providing a reference for related studies on insects where RNAi has low efficiency.

Funder

the Fundamental Research Funds of CAF

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3