High Nitric Oxide Concentration Inhibits Photosynthetic Pigment Biosynthesis by Promoting the Degradation of Transcription Factor HY5 in Tomato

Author:

Wang Lingyu,Lin Rui,Xu Jin,Song Jianing,Shao Shujun,Yu JingquanORCID,Zhou YanhongORCID

Abstract

Photosynthetic pigments in higher plants, including chlorophyll and carotenoid, are crucial for photosynthesis and photoprotection. Previous studies have shown that nitric oxide (NO) plays a dual role in plant photosynthesis. However, how pigment biosynthesis is suppressed by NO remains unclear. In this study, we generated NO-accumulated gsnor mutants, applied exogenous NO donors, and used a series of methods, including reverse transcription quantitative PCR, immunoblotting, chromatin immunoprecipitation, electrophoretic mobility shift, dual-luciferase, and NO content assays, to explore the regulation of photosynthetic pigment biosynthesis by NO in tomato. We established that both endogenous and exogenous NO inhibited pigment accumulation and photosynthetic capacities. High levels of NO stimulated the degradation of LONG HYPOCOTYL 5 (HY5) protein and further inactivated the transcription of genes encoding protochlorophyllide oxidoreductase C (PORC) and phytoene synthase 2 (PSY2)—two enzymes that catalyze the rate-limiting steps in chlorophyll and carotenoid biosynthesis. Our findings provide a new insight into the mechanism of NO signaling in modulating HY5-mediated photosynthetic pigment biosynthesis at the transcriptional level in tomato plants.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Crucial Role of SlGSNOR in Regulating Postharvest Tomato Fruit Ripening;International Journal of Molecular Sciences;2024-02-27

2. Chemical biology of reactive nitrogen species (RNS) and its application in postharvest horticultural crops;Oxygen, Nitrogen and Sulfur Species in Post-Harvest Physiology of Horticultural Crops;2024

3. Impact of Sodium Nitroprusside on the Photosynthetic Performance of Maize and Sorghum;Plants;2023-12-31

4. Nitric oxide is a key part of the UV-B-induced photomorphogenesis in Arabidopsis;Environmental and Experimental Botany;2023-12

5. Advances in Nitric Oxide Signalling and Metabolism in Plants;International Journal of Molecular Sciences;2023-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3