Global DNA Methylation Profiling Reveals Differentially Methylated CpGs between Salivary Gland Pleomorphic Adenomas with Distinct Clinical Course

Author:

Kiwerska KatarzynaORCID,Kowal-Wisniewska EwelinaORCID,Ustaszewski AdamORCID,Bartkowiak Ewelina,Jarmuz-Szymczak Malgorzata,Wierzbicka Malgorzata,Giefing MaciejORCID

Abstract

Pleomorphic adenomas (PAs) are the most frequently diagnosed benign salivary gland tumors. Although the majority of PAs are characterized by slow growth, some develop very fast and are more prone to recur. The reason for such differences remains unidentified. In this study, we performed global DNA methylation profiling using the Infinium Human Methylation EPIC 850k BeadChip Array (Illumina) to search for epigenetic biomarkers that could distinguish both groups of tumors. The analysis was performed in four fast-growing tumors (FGTs) and four slow-growing tumors (SGTs). In all, 85 CpG dinucleotides differentiating both groups were identified. Six CpG tags (cg06748470, cg18413218, cg10121788, cg08249296, cg18455472, and cg19930657) were selected for bisulfite pyrosequencing in the extended group of samples. We confirmed differences in DNA methylation between both groups of samples. To evaluate the potential diagnostic accuracy of the selected markers, ROC curves were constructed. We indicated that CpGs included in two assays showed an area under the curve with an acceptable prognostic value (AUC > 0.7). However, logistic regression analysis allowed us to indicate a more optimal model consisting of five CpGs ((1) cg06748470, (2) cg00600454, (3) CpG located in chr14: 77,371,501–77,371,502 (not annotated in GRCh37/hg19), (4) CpG2 located in chr16: 77,469,589–77,469,590 (not annotated GRCh37/hg19), and (5) cg19930657) with AUC > 0.8. This set of epigenetic biomarkers may be considered as differentiating factors between FGT and SGT during salivary gland tumor diagnosis. However, this data should be confirmed in a larger cohort of samples.

Funder

National Science Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3