Abstract
Flavour and nutritional quality are important goals for tomato breeders. This study aimed to shed light upon transgressive behaviors for fruit metabolic content. We studied the metabolic contents of 44 volatile organic compounds (VOCs), 18 polyphenolics, together with transcriptome profiles in a factorial design comprising six parental lines and their 14 F1 hybrids (HF1) among which were five pairs of reciprocal HF1. After cluster analyses of the metabolome dataset and co-expression network construction of the transcriptome dataset, we characterized the mode of inheritance of each component. Both overall and per-cross mode of inheritance analyses revealed as many additive and non-additive modes of inheritance with few reciprocal effects. Up to 66% of metabolites displayed transgressions in a HF1 relative to parental values. Analysis of the modes of inheritance of metabolites revealed that: (i) transgressions were mostly of a single type whichever the cross and poorly correlated to the genetic distance between parental lines; (ii) modes of inheritance were scarcely consistent between the 14 crosses but metabolites belonging to the same cluster displayed similar modes of inheritance for a given cross. Integrating metabolome, transcriptome and modes of inheritance analyses suggested a few candidate genes that may drive important changes in fruit VOC contents.
Funder
Agence Nationale de la Recherche
European Union’s Horizon 2020 research and innovation programme
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献