Intermittent Hypoxia Increased the Expression of DBH and PNMT in Neuroblastoma Cells via MicroRNA-375-Mediated Mechanism

Author:

Takasawa ShinORCID,Shobatake RyogoORCID,Takeda YoshinoriORCID,Uchiyama Tomoko,Yamauchi AkiyoORCID,Makino Mai,Sakuramoto-Tsuchida Sumiyo,Asai Keito,Ota Hiroyo,Itaya-Hironaka Asako

Abstract

Sleep apnea syndrome (SAS), characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia (IH)), is a risk factor for hypertension and insulin resistance. We report a correlation between IH and insulin resistance/diabetes. However, the reason why hypertension is induced by IH is elusive. Here, we investigated the effect of IH on the expression of catecholamine-metabolizing enzymes using an in vitro IH system. Human and mouse neuroblastoma cells (NB-1 and Neuro-2a) were exposed to IH or normoxia for 24 h. Real-time RT-PCR revealed that IH significantly increased the mRNA levels of dopamine β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in both NB-1 and Neuro-2a. Western blot showed that the expression of DBH and PNMT in the NB-1 cells was significantly increased by IH. Reporter assays revealed that promoter activities of DBH and PNMT were not increased by IH. The miR-375 level of IH-treated cells was significantly decreased relative to that of normoxia-treated cells. The IH-induced up-regulation of DBH and PNMT was abolished by the introduction of the miR-375 mimic, but not by the control RNA. These results indicate that IH stress increases levels of DBH and PNMT via the inhibition of miR-375-mediated mRNA degradation, potentially playing a role in the emergence of hypertension in SAS patients.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3