Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis

Author:

Pritoni MarcoORCID,Paine DrewORCID,Fierro GabrielORCID,Mosiman CoryORCID,Poplawski MichaelORCID,Saha Avijit,Bender Joel,Granderson Jessica

Abstract

Digital and intelligent buildings are critical to realizing efficient building energy operations and a smart grid. With the increasing digitalization of processes throughout the life cycle of buildings, data exchanged between stakeholders and between building systems have grown significantly. However, a lack of semantic interoperability between data in different systems is still prevalent and hinders the development of energy-oriented applications that can be reused across buildings, limiting the scalability of innovative solutions. Addressing this challenge, our review paper systematically reviews metadata schemas and ontologies that are at the foundation of semantic interoperability necessary to move toward improved building energy operations. The review finds 40 schemas that span different phases of the building life cycle, most of which cover commercial building operations and, in particular, control and monitoring systems. The paper’s deeper review and analysis of five popular schemas identify several gaps in their ability to fully facilitate the work of a building modeler attempting to support three use cases: energy audits, automated fault detection and diagnosis, and optimal control. Our findings demonstrate that building modelers focused on energy use cases will find it difficult, labor intensive, and costly to create, sustain, and use semantic models with existing ontologies. This underscores the significant work still to be done to enable interoperable, usable, and maintainable building models. We make three recommendations for future work by the building modeling and energy communities: a centralized repository with a search engine for relevant schemas, the development of more use cases, and better harmonization and standardization of schemas in collaboration with industry to facilitate their adoption by stakeholders addressing varied energy-focused use cases.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference154 articles.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3