Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System

Author:

Guo Huiqian,Yang Yue,Cheng Tongrui,Zhou Hanyu,Wang Weijia,Du XiaozeORCID

Abstract

In recent years, the steel-truss natural draft dry cooling technique has received attention owing to its advantages in better aseismic capability, shorter construction period, and preferable recycling. For cooling towers generating the draft force of air flow, its configuration may impact the thermal and flow performance of the steel-truss natural draft dry cooling system. With regard to the issue, this work explored the thermal and flow characteristics for the steel-truss natural draft dry cooling systems with four typical engineering tower configurations. By numerical simulation, the pressure, flow, and temperature contours were analyzed, then air mass flow rates and heat rejections were calculated and compared for the local air-cooled sectors and overall steel-truss natural draft dry cooling systems with those four tower configurations. The results present that tower 2 with the conical/cylindrical configuration had slightly lower heat rejection compared with tower 1 with the traditional hyperbolic configuration. Tower 3 with the hyperbolic/cylindrical configuration showed better thermo-flow performances than tower 1 at high crosswinds, while tower 4 with the completely cylindrical configuration appeared to have much reduced cooling capability under various crosswind conditions, along with strongly deteriorated thermal and flow behaviors. As for engineering application of the steel-truss natural draft dry cooling system, the traditional hyperbolic tower configuration is recommended for local regions with gentle wind, while for those areas with gale wind yearly, the hyperbolic/cylindrical integrated cooling tower is preferred.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3