Strong Designated Verifier Signature Scheme with Undeniability and Strong Unforgeability in the Standard Model

Author:

Yang XiaodongORCID,Chen Guilan,Li Ting,Liu Rui,Wang Meiding,Wang Caifen

Abstract

Strong designated verifier signature can provide an efficient way to protect the identity privacy of the signer and the integrity of the data transmitted over the public channel. These characteristics make it very useful in outsourcing computing, electronic voting, electronic bidding, electronic auction and other fields. However, most strong designated verifier signature schemes are unable to identify the real signature generator when the signer and the designated verifier dispute a signature. In addition, the existing strong designated verifier signature schemes in the standard model rarely satisfy strong unforgeability, and thus cannot prevent the attacker from forging a valid signature on any previously signed message. Therefore, designing a strong designated verifier signature scheme without random oracles that satisfies strong unforgeability and undeniability is very attractive in both practice and theory. Motivated by these concerns, we design the first undeniable strong designated verifier signature scheme without random oracles, in which the arbiter can independently perform the judgment procedure to prove whether a controversial signature is generated by the signer or the designated verifier. Under standard assumptions, the scheme is proved to be strongly unforgeable in standard model. Furthermore, it not only achieves non-transferability and privacy of the signer’s identity but also satisfies the undeniable property of traditional digital signature schemes. Performance analysis results show that the length of the signer’s private key, the designated verifier’s private key and signature length are 40 bits, 40 bits and 384 bits, respectively. Compared with he related schemes, the proposed scheme has higher performance in signature length, private key size and computational overhead. Finally, we show how to apply it to implement outsourcing computation in cloud computing.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Project of Lanzhou City of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Secure Vehicular Communication Using ID Based Signature Scheme

2. World electronic signature legislation

3. E-government data security exchange scheme based on proxy re-signature;Yang;Comput. Eng.,2017

4. A secure fog-based platform for SCADA-based IoT critical infrastructure;Baker;Softw. Pract. Exp.,2019

5. The Security of Big Data in Fog-Enabled IoT Applications Including Blockchain: A Survey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3