MISFP-Growth: Hadoop-Based Frequent Pattern Mining with Multiple Item Support

Author:

Wang Chen-Shu,Chang Jui-Yen

Abstract

In practice, single item support cannot comprehensively address the complexity of items in large datasets. In this study, we propose a big data analytics framework (named Multiple Item Support Frequent Patterns, MISFP-growth algorithm) that uses Hadoop-based parallel computing to achieve high-efficiency mining of itemsets with multiple item supports (MIS). The proposed architecture consists of two phases. First, in the counting support phase, a Hadoop MapReduce architecture is employed to determine the support for each item. Next, in the analytics phase, sub-transaction blocks are generated according to MIS and the MISFP-growth algorithm identifies the frequency of patterns. To facilitate decision makers in setting MIS, we also propose the concept of classification of item (COI), which classifies items of higher homogeneity into the same class, by which the items inherit class support as their item support. Three experiments were implemented to validate the proposed Hadoop-based MISFP-growth algorithm. The experimental results show approximately 38% reduction in the execution time on parallel architectures. The proposed MISFP-growth algorithm can be implemented on the distributed computing framework. Furthermore, according to the experimental results, the enhanced performance of the proposed algorithm indicates that it could have big data analytics applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Storage Challenge: Where Will All That Big Data Go?

2. How organisations leverage Big Data: a maturity model

3. Data mining with big data;Wu;IEEE Trans. Knowl. Data Eng.,2014

4. A survey of sequential pattern mining;Fournier-Viger;Data Science and Pattern Recognition.,2017

5. Recent Development in Big Data Analytics for Business Operations and Risk Management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3