Abstract
The stability of soil aggregates is the basis for supporting ecosystem functions and related services provided by the soil. In order to explore the mechanism of the influence of soil and vegetation properties on the stability of soil aggregates in desert communities, the particle size distribution and aggregate in different communities were compared, and the contribution of soil physical and chemical properties (soil salinity, soil water content, soil pH, soil organic carbon, soil total phosphorus, soil total nitrogen, etc.) and vegetation properties (species richness, phylogenetic richness, plant height and coverage, etc.) to the stability of soil aggregates was determined by using a structural equation model. The results show the following: Soil water content, organic carbon, and salt in river bank plant communities have significant direct positive effects on the mean weight diameter of soil, with path coefficients of 0.50, 0.11, and 0.24, respectively (p < 0.01). Water also indirectly affects soil stability by affecting plant height, soil salt, and soil organic carbon; species richness and vegetation coverage have significant direct positive effects on the soil stability index, with path coefficients of 0.13 and 0.11, respectively (p < 0.01). In the desert marginal plant community, the plant coverage and species richness have significant positive effects on soil stability, with path coefficients of 0.43 (p < 0.001) and 0.35 (p < 0.001), respectively. Phylogenetic richness has a significant direct negative effect on soil stability (p < 0.05), with an effect value of −0.27. Phylogenetic richness indirectly affects soil stability by adjusting the coverage, with an indirect effect value of 0.23. Moisture, ammonium nitrogen, and nitrate nitrogen have significant direct positive effects on soil stability, with effect values of 0.12, 0.09, and 0.15, respectively. Our research shows that the process of soil stabilization is mainly controlled by soil factors and vegetation characteristics, but its importance varies with different community types.
Funder
National Natural Science Foundation of China
Xinjiang Uygur Autonomous Region Graduate Research and Innovation Project