Affiliation:
1. Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 62102, Taiwan
2. Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan
Abstract
Particle plasmon resonance (PPR), or localized surface plasmon resonance (LSPR), utilizes intrinsic resonance in metal nanoparticles for sensor fabrication. While diffraction grating waveguides monitor bioaffinity adsorption with out-of-plane illumination, integrating them with PPR for biomolecular detection schemes remains underexplored. This study introduces a label-free biosensing platform integrating PPR with a diffraction grating waveguide. Gold nanoparticles are immobilized on a glass slide in contact with a sample, while a UV-assisted embossed diffraction grating is positioned opposite. The setup utilizes diffraction in reflection to detect changes in the environment’s refractive index, indicating biomolecular binding at the gold nanoparticle surface. The positional shift of the diffracted beam, measured with varying refractive indices of sucrose solutions, shows a sensitivity of 0.97 mm/RIU at 8 cm from a position-sensitive detector, highlighting enhanced sensitivity due to PPR–diffraction coupling near the gold nanoparticle surface. Furthermore, the sensor achieved a resolution of 3.1 × 10−4 refractive index unit and a detection limit of 4.4 pM for detection of anti-DNP. The sensitivity of the diffracted spot was confirmed using finite element method (FEM) simulations in COMSOL Multiphysics. This study presents a significant advancement in biosensing technology, offering practical solutions for sensitive, rapid, and label-free biomolecule detection.
Funder
Ministry of Science and Technology of Taiwan