Modeling Approaches for Determining Dripline Depth and Irrigation Frequency of Subsurface Drip Irrigated Rice on Different Soil Textures

Author:

Arbat GerardORCID,Cufí Sílvia,Duran-Ros Miquel,Pinsach JaumeORCID,Puig-Bargués JaumeORCID,Pujol JoanORCID,Ramírez de Cartagena Francisco

Abstract

Water saving techniques such as drip irrigation are important for rice (Oriza sativa L.) production in some areas. Subsurface drip irrigation (SDI) is a promising alternative for intensive cropping since surface drip irrigation (DI) requires a higher degree of labor to allow the use of machinery. However, the semi-aquatic nature of rice plants and their shallow root system could pose some limitations. A major design issue when using SDI is to select the dripline depth to create appropriate root wetting patterns as well as to reduce water losses by deep drainage and evaporation. Soil texture can greatly affect soil water dynamics and, consequently, optimal dripline depth and irrigation frequency needs. Since water balance components as deep percolation are difficult to estimate under field conditions, soil water models as HYDRUS-2D can be used for this purpose. In the present study, we performed a field experiment using SDI for rice production with Onice variety. Simulations using HYDRUS-2D software successfully validated soil water distribution and, therefore, were used to predict soil water contents, deep drainage, and plant water extraction for two different dripline depths, three soil textures, and three irrigation frequencies. Results of the simulations show that dripline depth of 0.15 m combined with one or two daily irrigation events maximized water extraction and reduced percolation. Moreover, simulations with HYDRUS-2D could be useful to determine the most appropriate location of soil water probes to efficiently manage the SDI in rice.

Funder

Partnership for Research and Innovation in the Mediterranean Area

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference57 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3