Abstract
Hydrogen embrittlement susceptibility ratios calculated from slow strain rate tensile tests have been employed to study the response of three high-strength mooring steels in cold and warm synthetic seawater. The selected nominal testing temperatures have been 3 °C and 23 °C in order to resemble sea sites of offshore platform installation interest, such as the North Sea and the Gulf of Mexico, respectively. Three scenarios have been studied for each temperature: free corrosion, cathodic protection and overprotection. An improvement on the hydrogen embrittlement tendency of the steels has been observed when working in cold conditions. This provides a new insight on the relevance of the seawater temperature as a characteristic to be taken into account for mooring line design in terms of hydrogen embrittlement assessment.
Funder
Ministerio de Economía y Competitividad
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献