Refinement Orders for Quantitative Information Flow and Differential Privacy

Author:

Chatzikokolakis KonstantinosORCID,Fernandes NatashaORCID,Palamidessi CatusciaORCID

Abstract

Quantitative Information Flow (QIF) and Differential Privacy (DP) are both concerned with the protection of sensitive information, but they are rather different approaches. In particular, QIF considers the expected probability of a successful attack, while DP (in both its standard and local versions) is a max-case measure, in the sense that it is compromised by the existence of a possible attack, regardless of its probability. Comparing systems is a fundamental task in these areas: one wishes to guarantee that replacing a system A by a system B is a safe operation that is the privacy of B is no worse than that of A. In QIF, a refinement order provides strong such guarantees, while, in DP, mechanisms are typically compared w.r.t. the privacy parameter ε in their definition. In this paper, we explore a variety of refinement orders, inspired by the one of QIF, providing precise guarantees for max-case leakage. We study simple structural ways of characterising them, the relation between them, efficient methods for verifying them and their lattice properties. Moreover, we apply these orders in the task of comparing DP mechanisms, raising the question of whether the order based on ε provides strong privacy guarantees. We show that, while it is often the case for mechanisms of the same “family” (geometric, randomised response, etc.), it rarely holds across different families.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal optimality and robust utility bounds for metric differential privacy1;Journal of Computer Security;2023-07-18

2. Analyzing the Shuffle Model Through the Lens of Quantitative Information Flow;2023 IEEE 36th Computer Security Foundations Symposium (CSF);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3