Password Similarity Using Probabilistic Data Structures

Author:

Berardi DavideORCID,Callegati FrancoORCID,Melis AndreaORCID,Prandini MarcoORCID

Abstract

Passwords should be easy to remember, yet expiration policies mandate their frequent change. Caught in the crossfire between these conflicting requirements, users often adopt creative methods to perform slight variations over time. While easily fooling the most basic checks for similarity, these schemes lead to a substantial decrease in actual security, because leaked passwords, albeit expired, can be effectively exploited as seeds for crackers. This work describes an approach based on Bloom Filters to detect password similarity, which can be used to discourage password reuse habits. The proposed scheme intrinsically obfuscates the stored passwords to protect them in case of database leaks, and can be tuned to be resistant to common cryptanalytic techniques, making it suitable for usage on exposed systems.

Publisher

MDPI AG

Subject

General Medicine

Reference47 articles.

1. Two-factor authentication

2. Binary codes capable of correcting deletions, insertions, and reversals;Levenshtein;Sov. Phys. Dokl.,1966

3. Privacy-preserving record linkage using Bloom filters

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Evaluation of a Password Diversifier Tool;Studies in Computational Intelligence;2024

2. GRAPH4: A Security Monitoring Architecture Based on Data Plane Anomaly Detection Metrics Calculated over Attack Graphs;Future Internet;2023-11-15

3. Towards the Creation of Interdisciplinary Consumer-Oriented Security Metrics;2023 IEEE 20th Consumer Communications & Networking Conference (CCNC);2023-01-08

4. A survey in privacy-preserving by bloom filters;PROCEEDINGS OF THE 4TH INTERNATIONAL COMPUTER SCIENCES AND INFORMATICS CONFERENCE (ICSIC 2022);2023

5. Bloom Filter-Based Realtime Risk Monitoring of SSH Brute Force Attacks;Innovations for Community Services;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3