Biogenic Silver Nanoparticles Processed Twice Using 8M Urea Exhibit Superior Antibacterial and Antifungal Activity to Commercial Chemically Synthesized Counterparts

Author:

Ravine TerrenceORCID,Yuan QunyingORCID,Howell Makenna

Abstract

Biogenic silver nanoparticles (b-AgNPs) were produced extracellularly using a cell lysate of genetically modified Escherichia coli and subdivided into three groups. Each group received a different treatment to determine which one best removed residual cell lysate material. The first group was treated twice using only water (water ×2), the second using 8M urea once (8M urea ×1), and the third using 8M urea twice (8M urea ×2). Subsequently, each group was assessed for its ability to inhibit the growth of six bacterial and two fungal pathogens. Testing was accomplished using the minimum inhibitory concentration (MIC) method. Commercially produced c-AgNPs were included for comparison. In all cases, the b-AgNPs (8M urea ×2) demonstrated the greatest inhibition of microbe growth. Conversely, the commercial AgNPs failed to show any growth inhibition at 10 µg/mL the highest concentration tested. The greater antibacterial activity of the b-AgNPs (8M urea ×2) over both b-AgNPs (8M urea ×1) and b-AgNPs (water ×2) is thought to be due to a larger degree of biofunctionalization (coating) occurring during the two sequential 8M urea treatments.

Funder

the Pat Capps Covey College of Allied Health Professions, University of South Alabama

Department of Defense/Army Research Office

Publisher

MDPI AG

Subject

Polymers and Plastics,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3