Design of ZnO-Drug Nanocarriers against the Main Protease of SARS-CoV-2 (COVID-19): An In Silico Assay

Author:

Díaz-Cervantes ErikORCID,Zenteno-Zúñiga Cristal,Rodríguez-González VicenteORCID,Aguilera-Granja Faustino

Abstract

The treatment of coronavirus diseases (COVID-19) is a principal aim worldwide that is required restore public health in the population. To this end, we have been studied several kinds of de novo and repurposed drugs to investigate their ability to inhibit the replication of the virus which causes the current pandemic—the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, finding a vehicle that promotes the controlled dosage is vital for avoiding secondary effects. For this reason, the present work exposes a nanostructured carrier based on ZnO, which is coupled to three repurposed drugs (Chloroquine, Dipyridamole, and Lopinavir) to understand the chemical interaction of the formed composite. The designed composites are modeled and optimized using the DFT formalism. In obtaining exergonic adsorption energies, we found values between 0.582 to 2.084 eV, depending on the used drug. At the same time, the HOMO orbitals demonstrate the electronic overlap between the ZnO-Np and the Lopinavir, which is the molecule with the higher adsorption energy. Finally, we carried out a docking assay to investigate the interaction of free drugs and composites with the main protease of the SARS-CoV-2, finding that the coupling energy of the composites (at around to 0.03 eV) was higher, compared with the free drugs. As such, our results suggest a controlled dosage of the drug on the SARS-CoV-2 target.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3