Effects of Ultrasonic Bending Vibration Introduced by an L-Shaped Ultrasonic Rod on the Microstructure and Properties of a 1060 Aluminum Alloy Strip Formed by Twin-Roll Casting

Author:

Shi ChenORCID,Fan Gaofeng,Mao Xuqiang,Mao Daheng

Abstract

In order to achieve the industrial application of ultrasonic energy in the continuous casting and rolling production of aluminum alloy, a new type of L-shaped ultrasonic rod was used to introduce an ultrasonic bending vibration into the aluminum melt in the launder during the horizontal twin-roll continuous casting and rolling process of a 1060 aluminum alloy. The effects of the ultrasonic bending vibration on the microstructure and properties of the 1060 aluminum alloy cast rolling strip and its subsequent cold rolling strip were studied experimentally, and the effect of the ultrasonic-assisted refining with different amounts of Al-Ti-B refiner was explored. The results show that under the same addition amount of Al-Ti-B refiner, the ultrasonic bending vibration can refine the grains of the cast rolling strip, make the distribution of precipitates more uniform, reduce the slag inclusion defects, and improve the mechanical properties to a certain extent. The microstructure and properties of the ultrasonic cast rolling strip with 0.18 wt% Al-Ti-B refiner or 0.12 wt% Al-Ti-B refiner are better than those of the conventional cast rolling strip, but the microstructure and properties of the ultrasonic cast rolling strip with 0.09 wt% Al-Ti-B refiner are slightly worse than those of the conventional cast rolling strip. Moreover, after cold rolling, the effect of the ultrasonic bending vibration on the improvement of the microstructure and properties of the aluminum alloy strip is inherited. A comprehensive analysis shows that the use of ultrasonic energy in this paper cannot completely replace the effect of the Al-Ti-B refiner, but it can reduce the addition amount of the Al-Ti-B refiner by 1/3.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3